Counting disjoint hypercubes in Fibonacci cubes

نویسندگان

  • Elif Saygi
  • Ömer Egecioglu
چکیده

We provide explicit formulas for the maximum number qk(n) of disjoint subgraphs isomorphic to the k-dimensional hypercube in the n-dimensional Fibonacci cube Γn for small k, and prove that the limit of the ratio of such cubes to the number of vertices in Γn is 1 2k for arbitrary k. This settles a conjecture of Gravier, Mollard, Špacapan and Zemljič about the limiting behavior of qk(n).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cube polynomial of Fibonacci and Lucas cubes

The cube polynomial of a graph is the counting polynomial for the number of induced k-dimensional hypercubes (k ≥ 0). We determine the cube polynomial of Fibonacci cubes and Lucas cubes, as well as the generating functions for the sequences of these cubes. Several explicit formulas for the coefficients of these polynomials are obtained, in particular they can be expressed with convolved Fibonac...

متن کامل

On disjoint hypercubes in Fibonacci cubes

The Fibonacci cube of dimension n, denoted as Γn, is the subgraph of n-cube Qn induced by vertices with no consecutive 1’s. We study the maximum number of disjoint subgraphs in Γn isomorphic to Qk, and denote this number by qk(n). We prove several recursive results for qk(n), in particular we prove that qk(n) = qk−1(n − 2) + qk(n − 3). We also prove a closed formula in which qk(n) is given in t...

متن کامل

The (non-)existence of perfect codes in Lucas cubes

A Fibonacci string of length $n$ is a binary string $b = b_1b_2ldots b_n$ in which for every $1 leq i < n$, $b_icdot b_{i+1} = 0$. In other words, a Fibonacci string is a binary string without 11 as a substring. Similarly, a Lucas string is a Fibonacci string $b_1b_2ldots b_n$ that $b_1cdot b_n = 0$. For a natural number $ngeq1$, a Fibonacci cube of dimension $n$ is denoted by $Gamma_n$ and i...

متن کامل

On median nature and enumerative properties of Fibonacci-like cubes

Fibonacci cubes, extended Fibonacci cubes, and Lucas cubes are induced subgraphs of hypercubes 9 defined in terms of Fibonacci strings. It is shown that all these graphs are median. Several enumeration results on the number of their edges and squares are obtained. Some identities involving Fibonacci 11 and Lucas numbers are also presented. © 2005 Published by Elsevier B.V. 13

متن کامل

خواص متریک و ترکیبیاتی مکعب‌های فیبوناتچی و لوکاس

An n-dimensional hypercube, Q_n, is a graph in which vertices are binary strings of length n where two vertices are adjacent if they differ in exactly one coordinate. Hypercubes and their subgraphs have a lot of applications in different fields of science, specially in computer science. This is the reason why they have been investigated by many authors during the years. Some of their subgraphs ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 215  شماره 

صفحات  -

تاریخ انتشار 2016